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The diffraction accompanying the regular reflexion 
of a plane obliquely impinging shock wave 
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The diffraction problem of a plane shock wave at the apex of an obtuse wedge 
treated by Lighthill (1950) is extended by assuming that the shock wave strikes 
the walls of the obtuse wedge at some finite oblique angle of incidence (not 
exceeding the critical angle). Transformations similar to that performed in the 
above-mentioned paper lead to a non-symmetrical boundary-value problem for 
an analytic function of a complex variable having a non-homogeneity in the form 
of a delta-function. It was found possible to extend, for the case considered, the 
method developed by Lighthill and construct the solution in almost as simple a 
form as given in the above-mentioned paper. The case of three-dimensional 
stationary flow is considered when the line of reflexion makes a finite angle with 
the edge of the wedge. 

1. Introduction 
A plane shock wave striking the rigid wall at  a finite angle of incidence a and 

reflecting regularly from it, reaches, at  the moment t = 0, a point where the slope 
of the wall changes abruptly by a small angle E (positive if this abrupt change 
forms an obtuse wedge of angle 277 - E) and continues its motion leaving behind 
the reflected shock front, which undergoes a slight distortion, an adjoining region 
of diffraction. 

In  what follows it will be assumed that the condition of regular reflexion is 
always satisfied. It relates each value of the strength of the impinging wave to a 
highest possible value of the angle of incidence, which decreases from the value 

corresponding to an extremely weak acoustic wave, to a minimum value a* 
equal for air to 39" 14', after which it increases slightly when the strength of the 
wave increases indefinitely. A detailed treatment of the regular reflexion may be 
found in chapter V of Von Mises' (1958) monograph. 

Further, it is assumed that the angle of incidence does not lie in the immediate 
vicinity of its critical value; for in this case, in the vicinity of the point of reflexion 
(point N in figure 1)) even in the case of a weak incident wave, the flow is non- 
uniform and the magnitude of the pressure exceeds the value given by the 
theory of regular reflexion. The effects which arise in this case are treated in 
detail in the investigation of Rijov & Christianovitch (1958). 
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The angle 6 is the small parameter of the problem. The investigated motion is 
considered as a small perturbation of the uniform flow of the gas, moving with a 
constant velocity behind the plane reflected shock front, which makes a finite 
angle y with the wall. Accordingly in the equations governing the plane non- 
stationary motion of the gas and in the boundary conditions only the first terms 
of the expansions of the unknown functions-the pressure, density and velocity 
components-in powers of that parameter are retained, the boundary conditions 
on the slightly distorted reflected shock front being satisfied on the plane front 
corresponding to its undisturbed state. 

FIGURE 1 

Therefore, it  is assumed that the region of diffraction is limited by the portion 
ABC of the reflected front (see figure l),  the portion DEF of the wall and by the 
arcs CD and AF of the Mach circle (with its centre coinciding with the gas 
particle which at the moment t = 0 was at  the point of reflexion N ,  and its radius 
equal to the velocity of sound in the gas through which the incident and undis- 
turbed reflected fronts have travelled). 

Depending on the strength of the incident wave and on the magnitude of the 
angle of incidence, the point where the slope of the wall changes abruptly may be 
either in (the point H )  or out (the point H ’ )  of the diffraction region; the corre- 
sponding cases are called subsonic and supersonic. In  figure 1 the supersonic case 
is represented by a dashed line; it may occur only in the case of strong shock 
waves and great angles of incidence. 

In the subsonic case the region of diffraction is adjoined along the arc AP by a 
uniform undisturbed gas flow, caused by the incident and reflected waves before 
the point of reflexion has passed the corner and along the arc CD by another 
uniform flow in the vicinity of the point of reflexion after it has passed the corner. 

In  both cases the first of these flows is considered as basic, the pressure, 
density and velocity disturbances being zero there. 

In the supersonic case in the vicinity of the point of intersection F of the arc 
FA and the wall, the region of diffraction is adjoined by a uniform flow with 
non-vanishing constant disturbances, caused by the supersonic flow passed the 
small inclination of the wall. The other portion of the boundary of this region is 
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formed by the Mach line, passing through the point H' and tangent to the arc 
AF at the point G .  

In the absence, among the determining parameters, of a characteristic linear 
dimension the problem is self-similar; for describing the resulting flow, instead of 
two special co-ordinates and time, we can thus introduce two non-dimensional 
independent variables. 

2. The regular reflexion of a shock wave from a wall 
The necessary formulae derived in this section are either taken from Von Mises' 

(1958) monograph or may be easily deduced from the relation contained in it. 
It is convenient to number the regions of uniform flows described above as 

shown in figure 1 and designate the pressure p ,  density p and velocity of sound a 
relating to  these regions with the corresponding indices. 

Given the strength and the angle of incidence of the impinging wave, the angle 
of reflexion is defined as the smaller (in absolute value) root of the quadratic 
equation 

Cltan2y+C2tany+C3 = 0 

I with coefficients Cl = ( A  cosecB a - 1))  

9 
I 

C - - (A2 cosec2 a! - 1) cot a ,  2-K-1 

c - - A ( n - y )  2 cosec2a- 1. 
3 - K - 1  

The quantity h in these relations is expressed in terms of the ratio of pressures 
pJpO or in terms of velocity U of the impinging wave in still air (No = Uo/ao, 
K is the specific heat ratio) as follows: 

The changes in the parameters of the gas across the incident shock are easily 
obtained from conservation laws and may be written in the form 

The velocity of the gas W, in the region 1 relative to the point of reflexion in 
terms of the velocity V, of the gas in this region relative to the wall may be 
obtained by projecting these two velocities on the perpendicular to the wall 
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The flow rotation angle in this expression (the same for incident and reflected 
waves) is defined by the well-known formula 

cotp = t a n a r G M o c o s e c 2 a  (Mi- 1)- 1 . I 1 
The velocity of propagation U, of the reflected wave, relative to the gas ahead of 
it, is equal to the projection on the normal to its front of the velocity vector W, 

U, = W,sin(P+y). (2.7) 

c uo 

FIGURE 2 

To obtain the magnitudes of the velocities of the gas, V, and W,, behind the re- 
flected shock wave relative to the gas ahead of its front and to the point of 
reflexion and the magnitudes of the pressure and density p z  and pz in this region, 
it is obvious that one should only substitute the quantities U,, a, and /3+ y 
instead of U,, and a in the formulae (2.4) and (2.5). 

At this point one should mention the role of the minimum value of the critical 
angle of incidence: for arbitrary strengths of the incident wave, y = a* and 
pz(a,)/po = pz (0 ) /po  when a = a*. Differentiating the solution of (2.1) with 
respect to a one may state that, for a = 0 and for a value of a! in the interval 
0 < a < a,, d[pz(a)/po]/da = 0. Hence the variation ofpZ(a!)/pO when a varies by 
e in the vicinities of these points will be of order eZ, i.e. will vanish in the case of 
the linear approximation considered. For the vicinity of the point a = 0, this 
was noted by Lighthill (1950). If e is not too small, this may occur on the whole 
interval 0 < a < a* ; then on both sides of the diffraction region the pressures are 
equal (except the vicinity of the point P in the supersonic case). However, for 
a > a, or a > a* in the case of very small E the difference in these pressures will 
be of order e;  therefore in what follows the formulae are derived independently 
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of the facts noted herein. It is obvious that the subsonic or supersonic case will 
occur depending on whether the quantity 

M, = Mo(a,/a2) cosec a - M 

(Mw =V,/a2, M = W2/a2), characterizing the velocity of the gas behind the 
reflected shock relative to the wall, is less or greater than unity. 

The values of the strengths and angles of incidence of the incident waves are 
plotted in figure 2 for the supersonic cases. These values are located in the region 
of high strengths and adjoin the portion of the curve of highest possible values 
of the angles of incidence in the case of regular reflexion including the point 
a = a, , plotted also in figure 1. The remaining values of the strengths and angles 
of incidence of the incident waves represented by the points below the two 
curves plotted in figure 2 correspond to subsonic cases. 

In  the subsonic case the quantity M, denotes the distance from the centre E 
of the Mach circle, limiting the region of diffraction, to the point H where the 
slope of the wall changes abruptly (see figure 1); in the supersonic case M, 
denotes the distance from the same centre to the point H', and thus defines the 
position of the point of tangency G of this circle with the Mach line from the 
point H' in terms of the angle 0; between the radius EG and the portion EH' of 
the wall 

sec 0; = M, when M, > 1. (2.9) 

It may easily be shown by simple calculation that if the diffraction occurs in air 
( K =  1.4), the point G moves from the point P to the point A with increasing 
strength and angle of incidence but never reaches it when the reflexion is regular. 

3. Introduction of the small parameter 
For simplicity of treatment of the self-similar motion considered, let us divert 

our attention from the whole reflexion pattern of an obliquely impinging shock 
wave from the wall, assuming the reflected shock as a plane shock wave propa- 
gating in still air in region 1 normally to its front. It is convenient to connect the 
system of non-dimensional co-ordinates (2, y) with the gas behind the reflected 
shock wave, its origin coinciding with the gas particle which in the moment 
t = 0 was at the point of reflexion. The z-axis is directed perpendicular and the 
y-axis parallel to the undisturbed reflected shock front. 

The co-ordinates (x, y) are given by the formulae 

2 = (X-%t)/a,t,  y = Y/a2t,  

where (X, Y )  are the co-ordinates connected with the gas ahead of the reflected 
shock front. 

When the expressions for the pressure, density and velocity components in 
region 2 added to small disturbances of these values, 
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are substituted in the system of equations governing the plane non-stationary 
motion of an ideal gas: 

(the bar over the letters denotes total quantities in any region), new non-di- 
mensional unknown functions are introduced, 

p = p'/p2a2G, p = p11p2, u. = a'/%, v = vt/&, (3.3) 
and using the last equation the density is eliminated it reduces to a system of 
three linear equations 

In (x, y) co-ordinates the equation of the undisturbed reflected wave front is 

U,-& W2siny 
a2 a 2  

x =- - - M sin y = m. (3-5) 

In order to obtain the boundary conditions on the curved portion of the re- 
flected shock front the value of U, in the expressions (2.4) must be replaced by the 
normal component of the local velocity of the shock front. The necessary tra.ns- 
formations are carried out in Lighthill's (1949) paper and therefore will not be 
given here (the only complication is that K may assume an arbitrary constant 
value). 

If the equation of the curved portion of the reflected shock front is written in 

(3.6) 
the form 

wheref(y) is assumed to be a small quantity of order F, then for the unknown 
functions, at  points on that portion adjacent to the region of diffraction, we 
obtain the expressions (MI = UJa,) 

x = m+f(y), 

I 

which, consistently with the formulation of the problem, are assumed to be 
satisfied on the straight line x = m. From (3.7), by dividing and differentiating 
on this straight line, the following conditions are obtained 

= ~ p ,  yavlay = Baplay, (3.8) 
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The value of p in the region 3 may be obtained from the third equation (3.7) 
when the equation of the rectilinear portion of the reflected shock front limiting 
this region is known. Its slope to the axis y may be determined if in expressions 
(2.1) and (2.8) a is replaced by a + e, y by y + y' and only terms of first degree in 
E and y' are retained; simple but cumbersome transformations lead to the result 

y'/e = (sin 2y/2 tana) 

h2(2 t ana-  3 tan y )  + [( 1 - h2) t ana  tan y + ( K  + 1) tan2 y - (3 - ~ ) h ]  tan a 
h[h(tan y -  2 tana)  + (3  - K )  tana] - [tan y -  ( K -  1)  tana] sin2a ' 

(3.10) 

The quantity y + y' is the angle of the reflected shock front on the left side (see 
figure 1) and the quantity y the angle on the right side of the obtuse wedge; 
therefore the required angle will be 

y'' = y'+E = f ' .  (3.11) 

The equation of the unknown portion of the reflected shock front is written 
as the equation of a straight line passing through the point of contact N' (see 
figure 1) of the incident wave NN' and the wall of the wedge H N .  The straight 
line NN' is defined by its slope to the axis equal to a+ y and by the distance 
N B  = ,Wcos y, the straight line HN' by the slope to the y-axis, equal to y - E ,  
and by the distance EH = M,. 

The resulting expression for the quantity p in the region 3 is (to within the 
assumed accuracy) 

X 

(3.12) 
a l - t t anycota  
u2 sina y"M - EMO 2 

2K a; 

Note that the expressions (3.10) and (3.12) together with all the expressions 
entering into the solution of the problem are of the same order of accuracy and 
are derived on the assumption that E is small compared with a. However, if in 
some specific case the quantity a is of the same order as e (although e may be 
sufficiently small) the formulae (3.10) and (3.12) will be inaccurate. In  these and 
also in all other cases the quantity y',  and depending on it the constant quantities, 
may be obtained by repeating the calculations using the non-linear relations in 
$ 2 .  When a is small we may use Lighthill's solution. 

The easiest way to obtain the conditions on the wall and on the Mach arc FA 
is to rotate the co-ordinate axes (x, y )  until the axis y coincides with the normal 
to the right portion of the wall (see figure 1). Let these co-ordinates and the 
corresponding velocity components be denoted by (2, y") and (G, 5) and let the 
equations (3.4) be written in this system of co-ordinates. It is evident that on the 
portion DH in the subsonic case and on the portion D F  in the supersonic case 
v = e; on the portion H F  in the subsonic case v = 0. Prom the last of equations 
(3.4) it then follows that on the portion DF of the wall we have 

ap/ay" = --eMW&(Z-ZH) when M, 6 1 ,  ap/ay" = 0 when M, > 1 

(3.13) 
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since on this portion g = 0 and %/ax = - eS(2 - xH), where 6 is a delta-function 
of 2, Z H  = Mw. 

The quantity p in the region 4 is defined by the supersonic flow past a small 
angle 

(3.14) 

Along the Mach arc FA, p = 0 in the subsonic case; in the supersonic case 
p = 0 on AG and is defined by (3.14) on GF. The position of the point G is given 
by the formula (2.9). Thus on the arc PA we have 

p = ap/aOf = 0 when M, G 1, 

p = - eM,/(M$ - l)*. 

} 13-15) ap/aOf = -eMw6(8' -8b)/(M&- I)$ when M, > 1, 

where S(& - 8b) is a delta-function of 8', the polar angle in the co-ordinate 
system (2, y"). 

4. Conversion to harmonic functions 

tions u and v, passing to polar co-ordinates ( r ,  19) 
It is well known that the system of equations (3.4), after eliminating the func- 

x = rcosI3, y = rsin8, (4.1) 

r = 2R/(1+ RZ), (4.2) 

and performing the transformation 

on the radii vectors, becomes the Laplace equation for the function p .  
The only portion of the boundary of the diffraction region which deforms by the 

transformation (4.2) is the chord line ABC, r = m/cos 8, which becomes a circle 
(see figure 3), 

2Rcos8 = m(l+R2) (4.3) 

cutting the unit circle R = r = 1 orthogonally at 8 = k cos-lm as pointed out 
by Lighthill (1949).. 

In that same paper it is shown that the boundary conditions (3.8) on the re- 
flected shock front may be reduced to a condition for only the function p ,  which, 
after the transformation (4.2), is satisfied on the circle arc (4.3). If n and s are the 
co-ordinates along the outward normal and tangent to the contour of the region 
of diffraction in the system of co-ordinates (R,B) (the positive direction of s 
corresponds to describing the contour anticlockwise) then this condition has the 
form 

The transformation (4.2) changes likewise the condition (3.13) at the corner in 
the subsonic case. Taking into account the relation S[r(R)] = S(R)/ldr/dRI, it will 
have the form 

ap/an = - eM,S(R - RH)/( 1 - M$)t, (4.5) 

where RH = [l-(l-H&)&]/Mw; (4.6) 
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the remaining boundary conditions are not changed by the transformation (4.2), 
one should only note the relation 

e, = e;-+ y. (4.7) 

5. Formulation of the Hilbert problem 
The region of diffraction in the plane g = R exp (i8) (see figure 3) is a curvilinear 

quadrangle with orthogonally intersecting arcs of circles and segments of 
straight lines. A bilinear transformation transferring the points of intersection 1 
and 2 of the perpendicular, dropped from the centre 0 of the circle ABC to the 
diameter DEF, with the unit circle respectively to the points 0 and 03, transforms 
this quadrangle into a concentric semi-annulus, since the above mentioned circle 
and the diameter become arcs of circles which are orthogonal to two straight 
lines, the transforms of the straight line 1-2 and of the unit circle. The resulting 
semi-annulus is mapped conformally into a rectangle by the logarithmic function. 
The superposition of these two conformal mappings defines the function 

g -- exp (ie,) 8, - 8, z = log - i p  
g-exp (iB,) 2 ’ 

8 1-  - sin-lM-l- y, 8, = n-sin-lM-1- y, J 

and the rectangle is the region of diffraction in the plane 

x = v+i7 (see figure 3). (5.2) 

The right vertical side of this rectangle tr = I corresponds to the reflected shock, 
the left vertical side CT = 0 to the wall, 0 < 7 < n; the arcs CD and F A  correspond 
to the horizontal sides r = 

The positions of the point G on the side FA and of the point H on the portion 
EF of the side DEF are determined from (2.8), (2.9), (4.6), (4.7) and (5.1) re- 
spectively for the super- and subsonic cases 

and 7 = 0, 0 < tr < 1 respectively. 

In  order to obtain the boundary condition on the transformed reflected shock 
front it is sufficient to consider only the transformation of the right-hand side 
of the relation (4.4) by the conformal mapping (5.1). The inversion of the trans- 
formation (5.1) for tr = 1 gives 

m, m,-Mcosr 
M tan y M - m, cos r’ tan8 = ~ mo = [1-(M2-1)tan2y]g; (5.4) 

substituting it in (4.4) leads to the condition on ABC 

m;H(&P- l)* tan y(mo - M cos 7) sin 7 
mmiA(m,- M cos7)2-- M2B tan2 y(M -mo cos T),’ (5 .5)  

P 
Q 

a* = b(7) = - = 
aPlan 
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The condition on the transform of the wall DEP,  according to (4.5) and (4.6),  may 
be written in the form 

ap/aa = - e M W S ( r - - H ) / ( l - M & ) ~  when M, 6 1, 

aplacr = 0 when M, > 1. 
} (5.6) 

The condition on the transform of the Mach arc F A ,  according to (3.15), takes the 

D 

\ I 

I \ 
\ 

\\ I 92 

D 

E 

H 

F 

T 

FIGURE 3 

and finally that on the transform of the Mach arc CD takes the form 

aplaa = 0. 

The whole system of boundary conditions for the derivatives in the x-plane 
may be written as a single relation 

Paplag- Qapjar = S ,  (5.9) 

if it is assumed that according to (5.5) P/Q = b(r), S = 0 on ABC,  that on CDEFA 
P = 1, Q = 0 and S is given by the right-hand sides of the expressions (5.6), 
(5.7) and (5.8) on the corresponding elements of the contour. 

The relation (5.9) is the boundary condition for the non-homogeneous Hilbert 
problem for a function, analytic in the rectangle (5.2), 

r ( z )  = apiaa - i ap/aT. (5.10) 

The unknown derivatives of the function p must satisfy also two integral 
conditions. The first of these, obtained by integration of the second relation 
(3.8) on the reflected wave front and indicated by Lighthill (1950) in his investi- 
gation of the symmetrical case of this problem, defines the normalization of the 
solution for the pressure. The second condition naturally arises when passing to 
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the non-symmetrical case and does not need further clarification. In  the variables 
CT, 7 these conditions are written in the form 

(5.11) 

According to the theory of boundary-value problems for analytic functions 
(see Muskhelishvili 1953) the determination of the solution of the formulated 
problem requires first finding the solution of the corresponding homogeneous 

r,(z) = a p o p  - i apolar, (5.12) problem 

which is obtained by assuming that the right-hand side S in the condition (5.9) 
vanishes everywhere on the contour. 

The coefficients in the boundary condition of this problem are discontinuous 
at  the points A and C ;  therefore in order to construct the solution it is necessary 
to know its character in the vicinity of these points. In what follows, we shall 
determine a solution, which is continuous in the closed region (5.2) and, therefore, 
bounded at  these points. 

6. Lighthill's method in the absence of symmetry 
According to the theory of boundary-value problems we may write explicitly 

the expression for the function l?,(z) in terms of a Cauchy type integral. However, 
the procedure employed by Lighthill (1950) in the symmetrical case leads in a 
simple way to expressions which are more effective in carrying out calculations. 
The representation of the argument of the unknown analytic function on the 
transform of the reflected wave front in the form of two additive terms of the 
type tan-l (a tan r )  permits easy calculation (by means of residue theory) of the 
integrals which determine its Fourier coefficients and an extension of every term 
of the series into the domain, after multiplying it by the required elliptic function, 
to find the solution. 

It turns out that in the non-symmetrical case, in spite of the relative complexity 
of the expression ( 5 4 ,  the argument of F,(z) on the transform of the reflected 
shock front also admits a simple representation of the indicated type, that is on 
ABC (see figure 3) we have 

4 

j=l 
arg r , ( z )  = tan+ b(7) = 2 ta1i-l ( E j  tan *r), (6.1) 

where 

1 - m2 { 1 - m2- h B [ (  1 - m2) A - mB]}* 
(6.2) 2[( 1 - m2) A - mB] 4 . 2  = 

The expression (6.1) indicates that arg r,(z) increases by 27r along the trans- 
form ABC of the reflected wave front when moving from point A to point C. 
From (5.9) it  follows that on CD and FA,  apo/au = Re l?,(z) = 0. On the other 
hand, the denominator of the expression (5.5) tends to a finite limit when T -+ 0 
and 7+n,  whereas the numerator, and therefore ap/ar = Im F0(z), in both cases 
tends to zero as a linear function. By virtue of the assumed properties of the 

26 Fluid Meoh. 35 



402 X. M .  Ter-Minassiants 

function Fo(z), it follows that the points A and C are its simple zeroes and that, 
if the limiting value of arg r,(z) when r + 0, r > 0, CT = 1 (at the point A )  is chosen 
as its zero value then, since A and C are corner points of the contour, arg I',(z) 
equals 3n12 on CD and &n on F A .  

In the case of an antisymmetric boundary condition on ABC, the position of 
the third simple zero of the function I',(z) is readily fixed in the middle of the left 
vertical side of the rectangle (5 .2) ,  since at  this point apo/aa = 0 according to the 
boundary condition on DEF and apo/ar = 0 in virtue of symmetry of the func- 
tion p .  This zero conditions a jump in the value of arg r,(z) by 7~ and separates 
the portions DE and EF of this side where the values of arg r,(z) are equal to its 
above-mentioned values on the adjoining horizontal sides CD and FA.  Thus, 
in this case, when describing the closed contour, arg I',(z) resumes the zero value. 

Without the symmetry property the values of arg F,(x) on ABC are otherwise 
distributed, but its total increase on this portion of the contour, as is readily 
seen from (6.1), remains the same. The solution for I',(z) for the case of non- 
antisymmetric argument will coincide with Lighthill's solution when a+ 0 if the 
total variation of arg I',(z), when describing the contour, will also vanish. Thus, 
it should be assumed that on loss of the symmetry property the simple zero of the 
function l?,(z) is displaced from the middle of the left vertical side of the rectangle 
(5 .2 )  along the contour. The position of this zero z = zo in general is not known 
u priori; however, with the availability in this connexion of the second con- 
dition (5.11) the whole system of boundary conditions is closed. 

The solution F,(z) of the homogeneous Hilbert problem, bounded at  points 
of discontinuity of the coefficients in the boundary condition and whose argu- 
ment does not vary when describing the contour, is unique. 

The function r,(z) is represented in the form of a product 

r,(z) = C R ( ~ ) L ( ~ )  (6.3) 

of fuiictions R(z) and L(z) analytic in (5 .2 ) ,  the first of which, if the constant 2n be 
subtracted from its argument, satisfies the boundary condition on ABC and has 
vanishing argument on the remaining portions of the contour, while arg L(z) is 
equal to 27r on ABC , to $n on the portion from the point C to some beforehand 
unknown point of the contour z ,  (where r o ( z 0 )  = 0 )  and to in on the portion 
from this point to the point A .  The quantity C in the expression (6.3) is so far an 
unknown constant. 

In  order to determine the function A(z) we must write out the Fourier sine 
series in the interval 0 < r < n, of the function (6.1) reduced by the constant 2n, 
as 

- 

It is easily seen that this expression will be the imaginary part of the logarithm 
of the function R(z) with z = 1 + ir, 0 < r < 7~ if we put 

1 n-lcosechnlcoshnz (6.5) 

It is obvious that on CDFA argA(z) = ImlogA(z) = 0. 
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It may be shown that the series in the square brackets in (6.5) converges at  any 
point of the region and its contour and uniformly converges to an analytic 
function in any closed region consisting of internal and boundary points except 
the points on the right vertical side of the rectangle (5 .2 ) .  

As in the symmetric case the function A(z) may be represented by infinite 
products on isolated portions of the contour. On the transform of the wall, i.e. 
on the left vertical side DF of the rectangle (5 .2) ,  the last factor in the square 
brackets takes the form cosec nl cos nr, which permits us to use the series 

substituting it in (6.5), changing the order of summation and taking into account 
the identity 

rn 
- 2 2 F%-' cos 7 = log( 1 - 2P cos 7 + F2)  

n = l  

leads to the expression 

The symbol A- denotes the contour value of the function A. 
The corresponding expression for the points of the transform of the Mach arc, 

i.e. of the side F A ,  differs from (6.6) only by that in it cos 7 should be replaced by 
cosh g. On the transform of the reflected shock front, i.e. on ABC, we obtain the 
expression 

( 1 - 2qn cos 7 + q 2 9 4  
(h-(Z+i~)l = n' (6.7) 

W 

n (1 - 2qnFi cos 7 + qZnF5) n=O 

j=1 

Here prime signifies that in the case of the term n = 0 the square root should be 
taken. 

In order to determine the function L(z) it is convenient to carry out conformal 
mapping of the rectangle (5 .2 )  into the lower half-plane. It is realized by the 
function 

w = [ + i r  = - kh!+,( - i z ,  q)/9,( - i z ,  q )  

so that the points A and G become < = 1, 7 = 0, while the points D and F 
become the co-ordinates 6 = & K ,  7 = 0; the co-ordinates of the point z = zo, 
where ro(zo) = 0, become 6 = [o(zo), 7 = 0 in the w-plane. The quantities 

&,(-iz,q), . . . ,9,(- iz,q) 

appearing in (6.8) and in the following are elliptic theta-functions (see Whittaker 
& Watson 1927, chapter 21) ;  the quantity k depends on the quantity q 

k2 = 1 - k'2, Jk' = (1  - Zq + 2p4- 2q9 + . . .)/(l + 2q + 2p4 + 2q9 + . ..). 
26-2 
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The construction of the function with piecewise constant arguments along the 
real axis is obvious; it is convenient to write it in the form 

- i(k’/k)l 1 - w ( z ) .  
L(z) = Lo@) .L,(z) .L,(Z) = [ o ( z )  - [ O ( z ) ] .  ___ (6.9) [ 1 - w2( z )]k  * 1 + w (2) ’ 

the function w(z )  denotes the expression (6.8). 
In  the above expression the corresponding factors are separated by multipli- 

cation signs (by points). The product of the first two generalizes the similar 
function in Lighthill’s solution, while the argument of the last function is equal 
to 7r on the transform of the shock front and vanishes on the remaining portions 
of the contour. In  the limiting (when a+O) symmetrical case, the Fourier co- 
efficients contain terms which are absent in Lighthill’s solution: the series 
generated by them converges to the minus logarithm of that last factor, intro- 
duced for simplifying the expressions of the Fourier coefficients when a + 0. 

The contour values L-(z) of the function L(x) and its constituent factors on 
different sides of the rectangle (5.2) and the values of L(z) at an arbitrary point in 
it are obtained from (6.9) by substituting there the contour values w- = E of the 
function w (6.8), which on the sides DF, FA and AC are respectively of the form 

where logq. log q’ = 7r2 or correspondingly the function (6.8). 

function L,, on these same elements of the contour, we obtain the formulae 
The result of the substitution of the functions Lo and L, is obvious; for the 

(6.11) 

(6.12) 

at an arbitrary point in the region (5.2) we have 
L,(z) = - ik*?Y3( - iz, 4)/?Y4( - ix, a). 

7. Solution of the problem 
The solution of the non-homogeneous Hilbert problem (5.5)-(5. lo), after the 

conformal mapping (6.8) of the domain (5.2) into the lower half-plane is carried 
out, is represented, according to the theory of boundary-value problems for 
analytic functions (see Muskhelishvili 1953)’ by a Cauchy-type integral. The 
integrand contains the right-hand side S of the boundary condition (5.9) with 
the delta-function as a factor; this allows us to  write out the solution without 
quadrature. After returning to the complex z-plane and introducing the designa- 
tion @ ( x )  = A(z)L,(z)L,(z), the solution in the subsonic case is represented in the 

and in the supersonic case in the form 
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The derivatives appearing in these formulae are given by the expressions (see 
Whittaker & Watson 1927, chapter 21) 

where (2 K/n)1 = 1 + 2q + 2q4 + 2q9 + . . . ; the factors constituting the function 
@-(i7),  @-(a) and the functions LJi7) and c(u) are defined by the formulae (6.10) 
and (6.11). 

The contour values of the functions (7.1) and (7.2) may be obtained, if we 
mentally turn again to the w-plane, use the formula 

lim W f i , G  - 6 - ir) = 1/(LY,G - 0 - W & , G  - 5) 
7-4 

and return to the x-plane (dividing 6 )  by the modulus of the derivative 
of the mapping function along the contour). At points on the contour of the 
rectangle (5.2) the solution, in the subsonic case, has the form 

while in the supersonic case it has the form 

The determination of the solution is completed by defining the constants c and 
t o ( z 0 )  according to normalization conditions (5.11). In  the subsonic case, the ex- 
pression for the derivative aplar along the transform of the reflected shock front 
appearing in these conditions, according to (5.10) and (7.4), is 

where 

co = ~ $ 1 j V G ( i 7 H )  84(713, q)/nk*(1- M&)&h-( i7 , )L~  (i711) 8 3 ( 7 H ,  q) ;  (7-8) 

the quantity b(7) is given by (5.5) or (6.1). The quantityy(7) = nz tanO(7) appear- 
ing in the first condition (5.11) is determined by means of (3.5) and (5.4). All the 
functions in (7.6)-(7.8) are real; their expressions are given in Q 6. 

Substituting (7.6) in (5.11) and taking out the unknown constants from the 
signs of integrals, we may easily obtain the following system of equations, linear 
relative to ,$,(z0) and l /c,  

(7.9) 
c l c ~ g O ( z , ) l ~ + C l , + c o l ,  = c1, 

ck&go(Zo) 1, + c13 + c0l5 = ~ 2 .  
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The integrals appearing in (7.9), 

are calculated numerically. The expression for "'(7) in the integrands is 

Y(7) = Ih-(l+i~)I L;(I+i7)b(7) / [b2(7)+ 1]*81(7,q). (7.11) 

The expressions for the constants c1 and c2 are 

c1 = -?"(1-n12)t/B, c2 = (p3-p2)/PZa2%; (7.12) 

the quantities y" and B are determined respectively by (3.10), (3.11) and (3.9), 
while the constant c2 is the difference of the values of p in the regions 3 and 2 (see 
figure 1) and is given by the right-hand side of (3.12). 

The solution of the system (7.9) determines the unknown constants: 

c = [ C 1 4 - % 4 - C * ( & 4 -  I5I,)I/V14- 4 1 3 h  (7.13) 

1 c113 - C , I 1  - C 0 ( l 6 Z 3  - 1511) 
&o(zo) = -- hd c1 l4 - c, I, - C0(I6 I4 - T5 I,) . (7.14) 

It may be easily understood that in the supersonic case the same formulae 
(7.13) and (7.14) hold for the constants c and &o(zo); however, the quantity co is 
defined now by the expression 

(7.15) co = cJ4w&:(%)42(%, q')/rWJ4& - l ) : R - ( ~ , ) L . , ( ~ G ) 4 3 ( ~ . G ,  q ' )  
while in the denominators of the integrands in the integrals J5 and I, (7.10) the 
quantity &(cG) will appear instead of &(i7H). 

Once the quantity &o(zo) is known, the position of the point zo on the contour 
may be determined by means of (6.10) and the tables for the theta-functions; 
however, there is no need of it in constructing the solution. It is completed by 
substituting the quantity t o ( z0 )  and c in the right-hand side of (7.1), (7.2), (7.4) 
and (7.5). 

8. Pressure distribution along the wall 

expression for the derivative a p / h  along the transform of the wall ( z  = i7), 
In  the subsonic case the contour values (7.4) of the solution give the following 

The expressions for the symbols R-(i7), L:(i7), L&(i7), &(i7) are given in $6,  
while the values of the constants co, c1 and Eo(z0) in Lo in $7.  The function (8.1) 
tends to infinity when 7 -+ 7H and stipulates a singularity of the logarithmic type 
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for the function p .  Therefore, the calculation of the non-dimensional pressure 
disturbance p at points T in the intervals 0 < T < rH and rH < T < ~TT should be 
carried out respectively by the formulae 

rr r7 
p = - J Im r-(iT)d7 or p = c2 + Im r - ( i~ )d7 ,  

0 J O  

where c2 is defined by the right-hand side of (3.12) or the right-hand side of (7.12). 

OJ/------ 
I 

-M=6-82--!- 
M = 3.20 

i M = 1.88 
0-5 H H Oa5H N' N' N' r r 

0 L---EzE, 
D E F 

a= loon= 20°a= 30° a= 10°a= 20°a= 30° 
FIGURE 4 

-- . . - *  _ .  .. . , ,..* -. . 1  . , *  The relationship ol the co-ordinate (01: the radius-vector r )  along the wall with 
the co-ordinate T along its transform on the rectangle (5.2) obtained by back- 
transformation of (5.1) and (4.2), is expressed as follows: 

r = ~(Mcos7-l)/(M-cos7)~, (8.3) 

where r is calculated from the point E (see figure 1) in the direction of the point 
D when T > cos-l M-l and in the direction of the point F when 7 < cos-l M-l. 

Given the strength of the incident wave pl/p, (or M,) the angle of incidence a 
and the wall inclination E ,  the calculations for the pressure distribution along the 
wall should be carried out in the following sequence: first the parameters y ,  M ,  
M,, H,, 0; of the regular reflexion are determined by (2.1)-(2.9); further, by 
means of (3.5), (3.9), (5.2), (5.3), (5.4), (6.2), (6.4) are found, respectively, the 
constants m, A and B, q and 1, 7 H ,  m,, E,, P j ;  then according to (6.6), (6.7), (6.9), 
(6.10), (6.11), (7.3) the functions of rH are determined. The calculation of the 
constant quantities corresponding only to the basic flow and not depending on 
the disturbance E is carried out by computing the integrals Il - I6 by means of 
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(7.10), (7.11) and ( 5 4 ,  (6.7), (6.9), (6.10). The parameters which depend on 8 
are then found: y',  y", co, cl, c2 by (3.10), (3.11), (7.8), (7.12), (3.12). Finally, by 
means of (7.13), (7.14) the quantities c, [o(zo) are determined; the values of the 
quantity p(7 )  are calculated by using (8.1), (8.2) with (6.6), (6.7), (6.9), (6.10), 
(6.11); the corresponding points on the wall by the expression (8.3). 

The curves in figure 4 illustrate the influence of the angle of incidence a (indi- 
cated in degrees by a number on each curve) on the character of the pressure 
distribution in the subsonic case. They correspond to the pressure ratio of the 
incident wave pl/pO = 3.33 and to an angle e = 6'. In  all the selected cases the 
values of the pressure in region 3 differ slightly from its values in region 2 (see 
notes in $5 2 and 3). The growth of the values of the quantity (p2 -p5)/c(p2 -po )  
with increasing a is distinctly seen. One may also notice the decreasing influence 
of the point of sudden change of the slope when a -+ 0. 

In  the supersonic case, the determination of the function p(7) along the wall 
may be made by the use of the second formula (8.2), substituting, according to 
( 7 4 ,  in (8.1) the quantity [ ( i ~ ~ )  for fl(cG) and choosing for the constant co the 
expression (7.15). 

FIUWRE 5 

9. The three-dimensional problem 
In  three-dimensional co-ordinate space the diffraction studied above is 

represented by that particular case of a possible gas motion due to reflexion of a 
plane shock wave from a wall with a small sudden change of slope, when the line 
of reflexion is parallel to the line of sudden change of the slope of the wall. The 
method developed permits consideration also of the cases when these lines make 
a finite angle $. 

The system of rectangular co-ordinates ( X I ,  y', 2') is connected with their point 
of intersection P, the axis z' being directed along the vector of total velocity 
W, behind the reflected shock front, the axis y' parallel t o  this front. The 
quantity W, is the modulus of the vectorial sum of the displacement velocity, 
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along the line of sudden change of the slope of the wall, of the point of 
intersection, obviously equal to U,/sinasin$, and of the gas velocity V, 
behind the reflected wave front relative to the wall. Then, in the part of 
space between the wall, the reflected wave front and the surface of the 
Mach cone with the apex at  the point P ,  in the absence of a fundamental 
length scale, a linear stationary supersonic conical flow is realized. The detail 
of the flow picture is schematically represented in figure 5 (for simplicity 
the transfer of the boundary conditions is not shown as in figure 1, and the re- 
flected wave front is represented as a plane wave). Chester (1954) considered a 
similar extension of Lighthill’s two-dimensional diffraction problem of a shock 
wave the front of which is perpendicular to the wall before its encounter of a 
slight inclination of the wall. As opposed to the case analyzed by Chester when 
the condition W, > a2 of the existence of the conical flow restricts the magnitude 
of the angle between the shock front and the edge of the wedge, in the motion 
considered here this condition is satisfied for any angle $, as follows from the 

(9.1) 
formula M* = W,/a2 = [Mg cosec2a cot2$(ag/a:) +M2]4, 

which is easily obtained from (2.8). 
Having the value of M,, we may determine the Mach cone angle v and the 

angle x between the axis z’ and the line of sudden change of the slope of the wall 
as follows: 

The introduction of non-dimensional co-ordinates 

v = sin-1 Mzl, x = sin-l (M,  cos +/M*). (9.2) 

x = x’/d tanv, y = y’/z‘tanv, (9.3) 

fixes the plane x‘ = cot v, interesecting the Mach cone along the unit circle. The 
lines of intersection of this plane with the plane of the undisturbed reflected wave 
front and the wall form an angle 

y* = tan-l [tanycos($-X)]. (9.4) 

In the plane x‘ = cot v, the distance h from the point of reflexion N to the 
centre E of the unit Mach circle, which plays here the same role as the quantity 
M in the two-dimensional problem, is 

h = cotv.tan($-x). (9.5) 

It is readily seen that the z‘ axis forms with the plane of the undisturbed 
reflected shock front an angle 

p = tan-l [tan (+-x) siny,]. (9.6) 
The procedure of deriving the boundary conditions on the shock front does not 

essentially differ from the transformations in Chester’s (1954) paper and is 
omitted here. It is based on the establishment of a relationship between the 
co-ordinates (x’, yf, 2’) and the co-ordinates ( X ,  Y ,  2) connected with the gas 
between the incident and reflected wave fronts, 

x = x ’ + ~ c o s p t ,  Y = y’, 2 = z’-(W*+Gsinp)t, (9.7) 

and on the representation of the slightly curved reflected shock front by an 
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equation of the form x tan v = tan p + $(y) seep; the following non-dimensional 
unknown functions are introduced: p = p'/a2p2& u = up/% cos v, v = w'/K cos v. 
The conditions (3.8) are obtained with coefficients (insteadof A and B )  

Since according to (9.6), (9.2) and (9.1) p + 0  when $ + O ,  the relations (9.7) 
and (9.8) become respectively (3.1) and (3.9). 

In order to calculate the pressure distribution by the available (in 5 8) formulae 
for the solution of the two-dimensional non-stationary problem, it is obvious 
that everywhere in these formulae the quantity E should be replaced by 
E ,  = E cos $ (the magnitude of the angle of sudden change of the slope of the wall 
in the plane perpendicular to the line of reflexion); besides, instead of M, in 
(2.8), use should be made of the quantity r s  = cot vtanx, instead of rn in (3.5) 
the quantity m, = cot v tanp = hsin y*, see (9.4), (9.5)) and instead of M the 
quantity h (9.5). 

Since on the wedge wall v = E, see v the factor see v should be added in (7.8) 
and (7.15). The indicated changes are easily established by considering figure 5 
and do not require further explanation. 

It is obvious that when $ =k 0 the supersonic case occurs when x > v (see 
figure 5) which leads, according to (9.2)) to the condition M,cos$ > 1; this 
means that the domain of values p l /po  and CL for which this case takes place is 
obtained by contraction of the corresponding domain (see figure 2) for the two- 
dimensional problem; if K = 1, 4 it disappears when $ > 28.1". 

The author wishes to express his gratitude to Prof. Bl .  J. Lighthill and 
academician L. I. Sedov for their unfailing interest in this work. 
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